

ANALOG DEVICES WIRELESS SENSOR NETWORK (WSN) SOLUTIONS

Industry WSN System Theory and Architecture

Wireless sensor networks (WSNs) consist of spatially distribute soutonomous sensors to monitor physical or environmental concluons, so these temperature, sound, vibration, pressure, humidity, motion, or polliciants. These sensors cooperatively pass their data through the network of a main location, the base station. Modern WSNs are bidirectional, liabling users to control the activity of the sensors.

WSNs are built from as little as less than ten to potentially thousands of nodes, with each node connected to one or more sensors. Each such sensor network node typically has several parts: a radiotransceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors, and an energy source—usually a battery or an embedded form of energy harvesting.

Communication Standards and Specifications

Several standards are currently either ratified or under development for wireless sensor networks. There are a number of standardization bodies in the field of WSNs. The IEEE focuses on the physical and MAC layers; the Internet engineering task force works on layers 3 and above. Standards are used far less in WSNs than in other computing systems. However, predominant standards commonly used in WSN communications include:

- ZigBee/802.15.4
- IEEE 802.11
- ISA100
- WirelessHART

Industry WSN System Design Considerations and Major Challenges

To have optimum WSN system design, designers must consider many different system requirements, including

- Power consumption constraints for nodes using batteries or energy harvesting
- Interoperability

- Ease of use
- Ability to cope with node failures
- Mobility of nodes
- Dynamic network topology
- Communication failures

Nodes

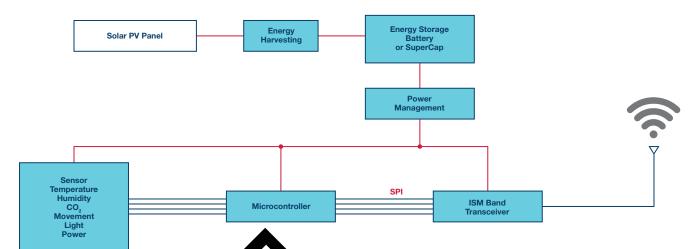
►

►

- Scalabilit o large scale deployment
- Ability to thstand harsh environmental conditions
- Unatt led

me main cl inge in a WS to produce low cost, low power, and odes. Energy is scarcest resource of WSN nodes, and it tiny sense determin the lifetime of no s. Another challenge is improving network ility in light g which can occur due to factors system re ket l such as mu ence, and node mobility. With these charact (QoS) of the network is sucs. th ality of se associated with paramete djacent mannel rejection, sensitivity, blocking, and antene fficiency

A full solution delivery includes RF software stacks, network protocol, and hardware, including wireless certification.


ADI offers market tailored solutions to aid in the design process. These solutions feature our industry-leading technologies.

Total Solutions from ADI

Leverage ADI's sensor, signal processing, RF, and power technology and expertise to achieve high performance in your WSN systems.

My/nalog 🖸 🎔 👘 🚹 Visit analog.com

Main Signal Chain of WSN Node

Notes: The signal chains above are representative of a mass sensor etwork application system. The technical requirements of the blocks may vary, but the products listed in the table are representative of some ADI solution what meet y a requirements.

Typical Applications

Street lighting: vehicle and passenger detection; lighting control.

Smart building: temperature, humidity, PIR, CO2, and vibration detection; lighting, ventilation, and alarm control.

Infrastructure moniton, the and yes son determs: lighting and video surveillance control.

Asset tracking: barcode, temperature, humidity, and vibration detection; barcode tracking.

Product Table List

Sensors	ISM Band Transceivers	Processors	Power Supply Devices
ADT7420/ADXL362/AD7151/ADT75/ AD7745/ADMP441/SHT21/ADPD220/ AD7798/AD7799/AD7792/ADA4528-1	ADuCRF101/ADF7020/ADF7021/ ADF7241/ADF7242/ADF703x	ADuCRF101/ADuCM3xx/ADuC7026	ADP125/ADP160/ADP3330/ADP5054
Energy Harvesting	Amplifiers	Muxes	ADC
ADP5090	AD8236/ADA4692-2/ADA4692-4	ADG439F/ADG509F/ADG1208/ ADG1209/ADG1408/ADG1409	AD7781

Main Products Introduction

Part Number	Description	Features	Benefits
Sensors			
ADT7420	Temperature sensor	$\pm 0.5^{\circ}\text{C}$ over a range of –40°C to +125°C	High stability and reliability vs. thermistors; no additional components and calibration required
ADXL362	3-axis MEMS accelerometer	±2 g/±4 g/±8 g with digital output; high resolution: 1 mg/LSB	Ultralow power
AD7745	CDC (capacitance-to-digital converter) for humidity sensing	leave ces to single or differential floating sensors eson to 4 aF (that is, up to 21 ENOB)	High accuracy: 4 fF; high linearity: 0.01% temperature sensor on chip
AD7798/ AD7799	Complete analog front ends for smoke detection	RMS nois (AD7799) 27 nV at 4.17 Hz; 65 nV at 6,7 Hz (AD108) 40 nV at 4.17 Hz; 85 nV at 16.7 Hz	Built in low noise, programmable gain, instrumentation amp, low power: 380 µA typical
AD7151	CDC for proximity sension	h sinder went caracitance input channels sensor capacitance (CSENS) up to 13 pF sensitivity to 1 fF	Ultralow power; 2.7 V to 3.6 V, 100 μA
Processors			
ADuCM36x	Analog microcontroller with ARM [®] Cortex [™] -M3 core	32-bit ARM and M3 processor core; 128 kB of flash memory, 16 h SBAM; style/dual 24-bit ADC; rifers up to style-beak performance	High integration, low power consumption, precision ADC performance
ADuCRF101	Analog microcontroller and RF transceiver	32-bit ARM Cortex 13 processor control & kB of flash memory, 8 kB SRA 862 MHz co MHZ co MHZ co 431 MHz to 464 km z	A fully integrated data acquisition system incorporating high performance, multichannel ADCs, DACs, ARM7TDMI [®] core, and Flash/EE memory on a single chip
RF			
ADF7242	ISM band transceiver	Frequency range (global SM band) 2400 M to 2483.5 MHz; programmabilitata rates and providation IEEE 802.15.4 complete (250 bits)	Low power consumption 19 mA (typical) in receive mode; high sensitivity (IEEE 802.15.4-2006) -95 dBm at 250 kbps
ADF7023	ISM band transceiver	Frequency bands 862 MHz to 920 mHz, 431 / 2 to 464 MHz low IF receiver with programmer / IF bandwidths 100 kHz, 150 kHz, 200 kHz, 10 kHz	High ceiver sensitivity (BER) –116 dBm at 1.0 kbps, 2 FSI iFSK –107.5 dBm at 38.4 kbps, 2 FSK, GFSK very low power consumption
Power			
ADP160/ ADP161/ ADP162/ ADP163	LDO	Ultralow quiescent current, low dropout, linear restors, that operate from 2.2 V to 5.5 V and provide up to 150 mA of output current	$1/Q = 560$ nA with 0 μ A load; $1/Q = 860$ nA with 1 μ ad; initial accuracy: $\pm 1\%$ over 1 load, and hyperature: $\pm 3.5\%$
ADP5054	Quad high current buck regulators	CH1/CH2: programmable 2 A/4 A/6 A sync buck regulator with low-side FET driver; CH3/CH4: 2.5 A buck regulator wide input range: 4.5 V to 15 V; 250 kHz to 2 MHz adjustable switching frequency	Small package, frequency synchronization input or output
ADP5090	Energy harvesting	Maximum power point tracking with harvester OCV sensing to extract the most energy from harvester; best-in-class ultralight load (10 μA to 100 μA), efficiency reaches <250 nA I/Q under deep sleep mode with programmable automatic switcher shutdown start at 380 mV input voltage with integrated charge pump	Provides energy storage management with flexible programmability to intelligently manage an additional power path for an optional primary cell backup battery
Mux			
ADG1408	4-channel/8-channel, ±15 V multiplexers	$4.7~\Omega$ maximum on resistance, up to 190 mA continuous current, rail-to-rail operation	Fully specified at ± 15 V/+12 V/ ± 5 V
Amp			
AD8236	In-amp	40 μA micropower (40 μA) INA with zero crossover distortion; 1 pA input bias current; high CMRR: 110 dB CMRR, G = 100; rail-to-rail input and output	Can operate on voltages as low as 1.8 V; excellent choice in battery-powered applications

A wireless sensor node capable of sensing environmental variables or other types of inputs and wirelessly transmitting the pertinent information to other nodes or to a base station.

ADI WSN Platform

- Available
 - ADT75 temperature sensor
 - ADXL362 accelerometer
 - ADMP441 microphone
 - · SHT21 sensiron humidity sensor
 - Panasonic PIR sensor
 - Connector for GSS CO₂ sensor
- CR2032 coin cell battery (on back of board)
- ▶ 45 mm × 33 mm (1.78" × 1.3")
- Out-of-the-box compatibility with ADI WSN plat

What ADI Can Provide to Customers

- WSN: Demo board
- ► RF EVB ADIsimRF,[™] ADIsimSRD[™]
- ► Power EVB ADIsimPower[™]
- Processor EVB emulation tools and software

For more WSN applications and products information, please visit:

www.analog.com/en/building-control-automation

For a complete WSN demo system, please visit: www.analog.com/en/building-control-automation_demo

Technical Support

Engage with the Analog Devices technology experts in our online support community. Ask your tough design questions, browse FAQs, or join a conversation.

ez.analog.com

engineer zor

c@analog.com 0800-2668-2282 (toll free)

3111 (direct line)

Customer Interaction Center

sample

ree Sampes www.analog.co

Analog Devices, Inc. Worldwide Headquarters

Analog Devices, Inc. One Technology Way P.O. Box 9106 U.S.A. Tel: 781.329.4700 (800.262.5643, U.S.A. only) Fax: 781.461.3113

Analog Devices, Inc. Europe Headquarters

Analog Devices, Inc. Wilhelm-Wagenfeld-Str. 6 80807 Munich Germany Tel: 49.89.76903.0 Fax: 49.89.76903.157

Analog Devices, Inc. Japan Headquarters

Analog Devices, KK New Pier Takeshiba South Tower Building 1-16-1 Kalgan, Minato-ku, Tokyo, 105-6891 Japan Tel: 813.5402.8200 Fax: 813.5402.1064

Analog Devices, Inc. Asia Pacific Headquarters

Analog Devices 5F, Sandhill Plaza 2290 Zuchongzhi Road Zhangjiang Hi-Tech Park Pudong New District Shanghai, China 201203 Tel: 86.21.2320.8020 Fax: 66.21.2320.8222 ©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Ahead of What's Possible is a trademark of Analog Devices. BR12275-5-2/16(A)

analog.com

