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DAC Definitions
Zero-Code Error is the measured output voltage from VOUT of the DAC 
when zero code (all zeros) is loaded to the DAC register. 

Zero-Code Error is typically expressed in LSBs.

DAC Definitions

DAC Offset Error is a measure of  the difference between the actual VOUT 
and the ideal VOUT in the linear region of the transfer function. Offset error 
can be negative or positive in the DAC and output amplifier.

Offset Error is typically expressed in mV or mAOffset Error is typically expressed in mV or mA.

DAC Gain Error is a measure of the span error of the DAC. It is the deviation 
in slope of the actual DAC transfer characteristic from the ideal.

Gain Error is usually expressed as a percentage of the full-scale range.Ga o s usua y e p essed as a pe ce tage o t e u sca e a ge

Full-Scale Error is a measure of the output error when full-scale code 
(0xFFFF) is loaded into the DAC register. Ideally, the output should be VREF
− 1 LSB. (Full-Scale Error = Offset Error + Gain Error)

Full-Scale Error is typically expressed as a percentage of the full-scale range.

Deadband Errors, DACs with integrated output amplifiers will have 
performance degradation, deadbands, at codes outside of the linear region 
of the output amplifierof the output amplifier. 

The number of deadband codes depends on the DAC output voltage span, the 
headroom and footroom of the amplifier, and the power supply rails used.  

ADC Definitions

ADC Offset Error is the deviation of the first code transition, for example 
(000…000) to (000…001) from the ideal (AGND + 1 LSB). Offset error is 
typically expressed in LSBs. 

C e t o s

ADC Gain Error is the deviation of the last code transition, for example 
(111…110) to (111…111) from the ideal (VREF – 1 LSB) after the offset error is 
adjusted out. Gain error for an ADC does not include the reference error 
and is typically expressed in LSBs.and is typically expressed in LSBs.
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Analog-to-Digital Converters (ADC) and Digital-to-Analog Converters (DAC) g g ( ) g g ( )
allow DSPs to interact with real-world signals.
Real-world signals are continuous (analog) signals.

Pressure sensor
Temperature sensor etcTemperature sensor, etc.

Real-world signal processing allows for efficient and cost effective 
extraction of information from a signal.

Signal amplitudeSignal amplitude
Phase, etc. 

Digital information differs from real-world information in two important 
respects…it is sampled, and it is quantized. Both of these restrict how 

h i f ti di it l i l t imuch information a digital signal can contain.

“real-World” sampled data systems consist of adcs and dacs
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Converter resolution represents the analog signal at a number of discrete levels           
or steps.

The smallest resolvable signal is 1 Least Significant Bit (LSB), which is equal
to FS/8 in this example.

I t l N li it (INL) i f th i d i ti i LSB fIntegral Nonlinearity (INL) is a measure of the maximum deviation in LSBs, from
a straight line passing through negative full-scale and positive full-scale.

Good INL is required for open-loop systems and many closed-loop systems.
Differential Nonlinearity (DNL) is the difference between the actual step size andy ( ) p
the ideal 1 LSB change between two adjacent codes.

DNL error results in:
Smaller or larger step sizes than the ideal 
Additive noise/spurs beyond the effects of quantization      

A DAC is monotonic if its output increases or remains the same for an increment
in the digital code, i.e., DNL > –1 LSB (a key requirement in a control system).

Conversely, a DAC is nonmonotonic if the output decreases for an increment
in the digital codein the digital code.

An ADC has no missing codes if the input voltage is swept over the entire input 
range and all output code combinations appear at the converter output. A DNL
error of > –0.99 LSB guarantees that the converter will have no missing codes.

converter resolution, inl, and dnl

converter errors (unipolar)
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Undersampled analog signal fa sampled @ Fs has images 
( li ) t | ± KF ± f | K 0 5 1 1 5(aliases) at | ± KFs ± fa|, K = 0.5, 1, 1.5 …
A signal with a maximum frequency fa must be sampled at a rate 
Fs > 2fa or information about the signal will be lost because of 
aliasingaliasing.
Aliasing occurs whenever Fs < 2fa.
The concept of aliasing is widely used in communications p g y
applications such as direct IF-to-digital conversion. 
A signal that has frequency components between fa and fb must 
be sampled at a rate Fs > 2 (fb – fa) in order to prevent alias s b a
components from overlapping the signal frequencies.

AMP ITUDEAMPLITUDE

fa IMAGE
NYQUIST ZONE 1

(BASEBAND)

0.5Fs0
FREQUENCY

(BASEBAND)

NYQUIST ZONE 2

Fs NYQUIST ZONE 3Fs

fa

1.5FsNYQUIST ZONE 4

2Fs

Clock to output delay
Group delay due to DAC propagation delay

Settling timeSettling time
Measured relative to output signal alone
Time between when signal leaves ±0.5 LSB error band to when it 
remains within ±0.5 LSB error band of final value

Slew rate
Defined as maximum rate of change of voltage or current at output
Specified as V/sec or A/sec depending on DAC output stageSpecified as V/sec or A/sec depending on DAC output stage
Typically measured for full-scale step size with 10% to 90% error band

Glitch impulse energy
C d b l ti d l ithi DACCaused by unequal propagation delays within DAC
Often measured for midscale LSB transition (011..111 to 100..000) 
Measured as “area” of glitch impulse with units p/nV-s or p/nA-s
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FREQUENCY

Sinc(x)
DAC’s time domain step response (zero-order hold) modifies DAC 
frequency response
DAC output signals are attenuated by sin(π f/fdac)/(π f/fdac) envelope

Harmonics
Created by DAC’s static and dynamic nonlinearities

Images g
Duplicate of the desired signal (and its DAC induced harmonics) at 
higher Nyquist zones 
Images are predicted by sampling theory

SFDR 
Measured with single-tone output in first Nyquist band (unit is dBc)
Difference between single-tone amplitude to the next highest spurious g p g p
tone

Noise Spectral Density (NSD)
Integration of the noise floor in a small frequency band (unit is (yqg
dBm/Hz or nV/rtHz)

Frequency domain dac output

nyquist’s criteria
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SNR (Signal-to-Noise Ratio, dB or dBFS)
The ratio of the RMS value of the measured output signal (peak or full 
scale) to the RMS sum of all other spectral components excluding the first 
6 harmonics and DC.

SINAD (Signal-to-Noise Ratio and Distortion, dB)

RMS Signal = (FSR / 2) / √(2), RMS Noise = Qn = q / √(12)
SNR (dB) = RMS Signal / RMS Noise = 20 × log(2(n – 1) × √6)) = 6.02 × n + 1.76

The ratio of the RMS signal amplitude to the RMS value of the sum of all 
other spectral components including harmonics, but excluding DC.
SINAD (dB) = –20 × log (√(10(–SNR W/O DIST/10) + 10(THD/10)))
ENOB (BITS) = (SINAD – 1.76 + 20 × log (FSR/Actual FSR)) / 6.02

THD (Total Harmonic Distortion, dBc)
The ratio of the RMS sum of the first 6 harmonics to the RMS value of the 
measured fundamental.
THD ( dB) = 20 × log (√((10(–2ND HAR/20))2 + (10(–3RD HAR/20))2 + (10(–6TH HAR/20))2 )

SFDR (Spurious-Free Dynamic Range, dB or dBFS)
The ratio of the RMS value of the peak signal amplitude (or full-scale) to 
the RMS value of the amplitude of the peak spurious spectral component. 

THD (–dB) = 20 × log (√((10( 2ND HAR/20))2 + (10( 3RD HAR/20))2 +… (10( 6TH HAR/20))2 ) 

The peak spurious component may or may not be a harmonic. 
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analog-to-digital converter ac Performance specifications

Generally an antialiasing filter is required on the analog front end of an ADC.
If the sampling frequency is not much greater than the max input frequency fa, then 
the requirements on an antialiasing filter can be severe, as in (A).
The dotted regions indicate where the dynamic range can be limited by signals gygyg
outside the bandwidth of interest.

Oversampling relaxes the requirements of the analog antialiasing filter as 
shown in (B).

Sigma delta converters are a good exampleSigma-delta converters are a good example.

Outputs of DACs need filtering also, and these are called “anti-imaging” 
filters. They serve essentially the same purpose as the antialiasing filter 
ahead of an ADC. 

Oversampling Relaxes Requirements on Baseband Antialiasing Filter

BA
fa fs – fa Kfs– fafaa fs fa Kfs fafa

DR

ffsfs
2

KfsKfs
2

STOPBAND ATTENUATION = DR
TRANSITION BAND: fa to fs – fa

STOPBAND ATTENUATION = DR
TRANSITION BAND: fa to Kfs – faa s a

CORNER FREQUENCY: fa
a s a

CORNER FREQUENCY: fa

oversampling relaxes requirements on Baseband antialiasing Filter
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The total amount of jitter is dependent on 
the effective aperture jitter within thethe effective aperture jitter within the 
converter, as well as the external jitter 
generated by the sampling clock circuit.

These terms are root sum squared to determine 
the total amount of jitter applied to the signal

TOTAL JITTER =

(ADC APERTURE JITTER) 2 + (SAMPLING CLOCK JITTER) 2

the total amount of jitter applied to the signal 
chain.

dV

In this example, if a 12-bit ENOB, 74 dB SNR 
is desired for the design with an analog 
input frequency of 100 MHz then the total

ERROR 
VOLTAGE

input frequency of 100 MHz, then the total 
jitter required must be 0.5 ps or less. 

ENCODEENCODE

dt
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Single-ended signaling is most common.
Differential signals measure the difference in voltage between the 
positive and negative input terminals.

The inputs are 180 degrees out of phase with each other.

Many benefits in using differential inputsMany benefits in using differential inputs.
Input transient reduction
Input noise reduction
Signal swing is doubled

Pseudo differential is a single-ended/differential hybrid.
Separation of signal ground from ADC ground for the ADC conversion

Consider ADC common-mode requirements Vcm = (Vp + Vn) / 2.q ( p )
The ADC converts VIN+ – VIN–.

Example: Unipolar Differentialp p

1V p-p

VIN+ 1.5V
VIN+ VIN–

VIN–

Vcm = 1 VDC
+
–

1V

0 5V

Vcm

1V p-p

VIN 0.5V

VIN(adc) = VIN+ – VIN– = 2 V p-p
Consider differential common-mode requirements
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analog input/output configurations

Si l t N i R ti (SNR) i th diff i l l b t th RMSSignal-to-Noise Ratio (SNR) is the difference in level between the RMS 
signal level and the RMS level of the noise floor, except the first six 
harmonics and DC. 

ADC FULL-SCALE (dBFS)
0

SNR li it th bilit f th

BIN SPACING =

20

40 74dB = 6.02N + 1.76dB = SNR

N = 12 BITS
M = 4096

FS
4096

FS = 245.76MSPS
# OF FFT PTS

SNR limits the capability of the 
converter to see “small” signals.
Converter SNR is, theoretically, 
limited by its resolution.
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ideal ADC will have an
SNR = 6.02N + 1.76 (dB),
N = Number of bits.
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Effective Number of Bits
(ENOB) is calculated from SNR: 
ENOB = (SNR – 1.76) / 6.02 (bits).
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Dynamic Range (DR) is the difference in level between the highest signal 
peak that can be reproduced by the system and the amplitude of the y y
highest spectral component of the noise floor. 

DR provides amplitude range so the converter can “see” the signal of interest.
Converter DR is limited by SFDR and, theoretically, by its resolution.

C id i l i t i DR bilit f th tConsider using analog gain to increase DR capability of the system.
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Example: 10-bit ADC with an FSR = 4 V p-p has an LSB = 3.9 mV p-p or 4/2BITS. 

FREQUENCY FREQUENCY

SIGNAL CHAIN

Therefore, 4 V / 3.9 mV = 1024 codes. This can also be expressed in dB or 20 × log 
(1024) = 60 dB. 

What resolution do i need? dynamic range vs. signal-to-noise ratio requirements

DAC Amplifier Coupled Circuit
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ADC Amplifier Coupled Circuit
AMP-AVDD

ANALOG 200Ω

205Ω

24Ω 0.1µF 33Ω BUFFERED OR
UNBUFFERED ADC
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AVDD DRVDD
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INPUT +VS
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ADC INTERNAL
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205Ω

24Ω 0.1µF
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VCM

RESOLUTION N 2N VOLTAGE
(2 V/10 V FS) ppm FS % FS dBFS

2-bit 4 0.5/2.5 V 250,000 25 –12
4-bit 16 125/625 mV 62,500 6.25 –24
6-bit 64 31.3/156 mV 15,625 1.56 –36
8-bit 256 7.8/39.1 mV 3906 0.39 –488 bit 256 7.8/39.1 mV 3906 0.39 48
10-bit 1024 2/9.77 mV 977 0.098 –60
12-bit 4096 0.49/2.44 mV 244 0.024 –72
14-bit 16,384 122/610 µV 61 0.0061 –84
16-bit 65,536 30.5/153 µV 15 0.0015 –96
18-bit 262,144 7.6/38 µV 4 0.0004 –108
20-bit 1,048,576 1.9/9.54 µV 1 0.0001 –120
22-bit 4,194,304 0.47/2.38 µV 0.24 0.000024 –132
24-bit 16,777,216 119/596 nV* 0.06 0.000006 –144

*600 nV is the Johnson Noise in a 10 kHz BW of a 2.2 kΩ resistor @ 25°C.

Remember: 10 bits and 10 V FS yields an LSB of 10 mV, 1000 ppm, or 0.1%.
(All other values may be calculated by powers of 2.)

Quantization:  
The size of a least significant Bit (lsB)

converter circuits


